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Die Synthese der ersten ‹bergangsmetall-Carbin-Komplexe
war ein Meilenstein in der Metallorganischen Chemie.[1] Eine
Vielzahl stˆchiometrischer und katalytischer Umsetzungen

einer Suspension von 50 mg (0.018 mmol) 3 in 8 mL wasserfreiem
Acetonitril gegeben. Nachdem sich aus der Suspension eine homo-
gene Lˆsung gebildet hatte, wurden 3 mg (0.009 mmol) 4,4’-
Biphenyldisulfonylchlorid in 0.5 mL wasserfreiem Acetonitril dazu
injiziert. Die Reaktionsmischung wurde 30 min unter R¸ckfluss und
weiter bei Raumtemperatur ¸ber Nacht ger¸hrt. Das Lˆsungsmittel
wurde im Vakuum entfernt und das Rohprodukt durch S‰ulenchro-
matographie an Silicagel mit CH2Cl2/Ethylacetat (3:1) als Eluens
gereinigt, wobei ein farbloser Feststoff (Rf¼ 0.80) erhalten wird.
Ausb. 40 mg (75%); Schmp. > 300 8C. 1H-NMR (400 MHz,
[D6]DMSO): d¼ [0.05, 0.86, 0.95] (ArCH3), 1.24, 1.36, 1.48, 1.56,
1.82, 1.99, 2.14, 2.19, 2.24, 2.28, 2.32, 4.88 (m, 8H, OCH2), 4.99 (m, 2H,
ArH), 5.31±5.46 (m, 8H, CH2¼CH), 6.07 (m, 4H, CH¼CH2), [6.42,
6.50, 6.63, 6.79, 6.89, 6.95, 6.98, 7.16, 7.34, 7.50, 7.52, 7.56, 7.77, 7.80,
7.82, 7.87, 7.90, 7.92, 7.98, 8.02, 8.05, 8.09, 8.11, 8.20] (ArH), [8.27,
8.58, 9.06, 9.13, 9.31, 9.35, 9.47, 9.57, 9.78, 9.79, 10.21, 10.48, 10.52,
10.57, 10.99, 11.00, 11.04, 11.06 ppm] (NH); MALDI-TOF-MS:
5972.1 [Mþ], 5995.7 [MþNaþ]; ber. f¸r C378H400N30O34S2: 5971.5 [Mþ].
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wurde mit diesen Verbindungen durchgef¸hrt.[2] Im Vergleich
dazu gibt es nur sehr wenige Untersuchungen ¸ber die
schwereren Analoga der Carbinkomplexe in der IV. Haupt-
gruppe, [LnM�E�R] (L¼Ligand, M¼‹bergangsmetall, E¼
Si±Pb, R¼ organischer Rest). Silylidin-,[3] Stannylidin- und
Plumbylidinkomplexe waren bislang unbekannt, und im Fall
von Germanium konnten bisher nur die Germylidinkomplexe
[(h5-C5H5)(CO)2M�Ge�R] (M¼Cr±W, R¼ 2,6-Mes2C6H3,
2,6-Trip2C6H3 (Trip¼ 2,4,6-Triisopropylphenyl))[4] und trans-
[X(L2)2M�Ge(h1-C5Me5)] (X¼Cl±I, L2¼R2PCH2CH2PR2
(R¼Et (depe), R¼Ph (dppe)), 2PMe3, M¼Mo, W)[5]
isoliert werden. Wegen der geringen Neigung der schwereren
Elemente der IV. Hauptgruppe zur Bildung von Dreifach-
bindungen ist dies keineswegs ¸berraschend. Entsprechend
gehˆrt der Aufbau solcher Bindungen zu den grˆ˚ten
Herausforderungen der Hauptgruppenelement-Chemie.[6]

Wir beschreiben nun die Synthese und die Struktur des
ersten Stannylidinkomplexes, trans-½ClðPMe3Þ4W�Sn�C6H3-
2; 6-Mes2� (3).

Wird ein Gemisch aus cis-[W(N2)2(PMe3)4] (1)[7] und dem
meta-Terphenylzinn(ii)-chlorid [{Sn(2,6-Mes2C6H3)Cl}2] (2)[8]

in siedendem Toluol erhitzt, so bildet sich rasch unter
Farb‰nderung nach rotbraun der Stannylidinkomplex 3
[Gl. (1)]. Die Reaktion ist nach wenigen Minuten abge-
schlossen, und es konnten IR-spektroskopisch keine Inter-
mediate nachgewiesen werden. Dar¸ber hinaus zeigten die
1H- und 31P{1H}-NMR-Spektren des nach dem Entfernen des
Lˆsungsmittels erhaltenen Rohprodukts die selektive Bil-
dung von 3 an.[9] Der Stannylidinkomplex wurde nach Auf-
arbeitung und Kristallisation aus Pentan als rotbrauner,
mikrokristalliner, sehr luftempfindlicher Feststoff in 47%
Ausbeute isoliert. Dunkelrote Pentanlˆsungen von 3 f‰rben
sich bei Luftzutritt schlagartig gelb, und es entsteht ein wei˚er
Niederschlag. Thermisch dagegen ist Komplex 3 bemerkens-
wert stabil: Er zersetzt sich erst oberhalb 165 8C unter
allm‰hlicher Umwandlung in eine schwarzbraune Masse.

Die Struktur von 3 im Festkˆrper wurde durch Rˆntgen-
beugung am Einkristall ermittelt.[10] In der Elementarzelle
liegen zwei unabh‰ngige Molek¸le mit geringf¸gig unter-
schiedlichen Bindungsparametern vor.[11] Die Struktur eines
der beiden Molek¸le ist in Abbildung 1 dargestellt, die
zugehˆrigen Bindungsparameter finden sich in der Legende.
F¸r die nachfolgende Diskussion wurden die Mittelwerte
verwendet. Das Wolframatom ist verzerrt oktaedrisch koor-
diniert, und Chloro- und Stannylidinligand sind trans ange-
ordnet (Cl-W-Sn 179.38). Zwei trans-koordinierte PMe3-
Liganden (P2 und P4 in Abbildung 1) sind um 11.28 zum
Chloroliganden, die beiden anderen (P1 und P3) um 1.78 zum

Stannylidinliganden geneigt. Die gleiche Verzerrung des
M(PMe3)4-Koordinationspolyeders (von planar-quadratisch
zu einem abgeflachten Tetraeder) tritt auch in den Carbin-
komplexen trans-[Cl(PMe3)4W�C�R] (R¼H, Me)[12] und im
Germylidinkomplex trans-[Cl(PMe3)4Mo�Ge�(h1-C5Me5)][5c]
auf. Die 2.4902(8) ä lange W-Sn-Bindung in 3 ist 0.2±0.3 ä
k¸rzer als W-Sn-Einfach- oder -Doppelbindungen (2.71±
2.81 ä).[13] Bemerkenswert ist auch die L‰ngendifferenz von
0.188 ä zwischen den W-E-Dreifachbindungen im Stannyli-
dinkomplex 3 und im Germylidinkomplex trans-
[Cl(dppe)2W�Ge�(h1-C5Me5)].[5a] Sie unterscheidet sich nur
marginal von der Differenz der Elementradien (0.19 ä), die
aus dem E-E-Abstand in den Alkin-Homologen REER (E¼
Ge, Sn; R¼ 2,6-Dipp2C6H3, Dipp¼ 2,6-iPr2C6H3) berechnet
wurden,[6e,f] und auch von der Differenz der Kovalenzradien
von Zinn und Germanium (0.20 ä).[14] Ein weiteres Struktur-
merkmal von 3 ist die lineare Koordination des Zinnatoms
(W-Sn-CAryl 178.2(1)8). Darin unterscheidet sich der Komplex
3 vom πDistannin™ RSnSnR (R¼ 2,6-Dipp2C6H3), das eine
trans-gewinkelte Struktur mit einem Sn-Sn-CAryl-Bindungs-
winkel von 125.24(7)8 einnimmt.[6e]

Die 1H-, 13C{1H}-, 31P{1H}- und 119Sn{1H}-NMR-Spektren
von 3 best‰tigen die im Einkristall gefundene Struktur (siehe
Experimentelles). So zeigt das 31P{1H}-NMR-Spektrum ein
Singulett f¸r die chemisch ‰quivalenten PMe3-Liganden bei
d¼�27.7 ppm. Dieses Signal wird wegen der Kopplung mit
dem 183W- (1J(W,P)¼ 256.7 Hz) und den 117Sn/119Sn-Kernen
(2J(Sn,P)¼ 129.6 Hz) von zwei Satelliten-Paaren begleitet.
Weiterhin findet man im 119Sn{1H}-NMR-Spektrum von 3 ein
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Abbildung 1. DIAMOND-Abbildung der Struktur eines der beiden un-
abh‰ngigen Molek¸le von 3 im Kristall. Die thermischen Schwingungs-
ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit. Die Wasser-
stoffatome sind der ‹bersichtlichkeit halber nicht dargestellt. Ausge-
w‰hlte Bindungsl‰ngen [ä] und -winkel [8]: W1-Sn1 2.4901(7), W1-Cl1
2.507(2), W1-P1 2.470(2), W1-P2 2.454(2), W1-P3 2.425(2), W1-P4
2.500(2), Sn1-C1 2.179(5), W1-Sn1-C1 178.2(1), Sn1-W1-Cl1 179.52(7),
Sn1-W1-P1 87.23(5), Sn1-W1-P2 101.42(5), Sn1-W1-P3 90.02(6), Sn1-
W1-P4 100.25(5), Cl1-W1-P1 93.20(8), Cl1-W1-P2 78.39(7), Cl1-W1-P3
89.55(9), Cl1-W1-P4 79.96(7), Sn1-C1-C2 119.9(4), Sn1-C1-C6 121.3(4).
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Quintett bei d¼ 340.1 ppm (2J(119Sn,31P)¼ 133.8 Hz), das bei
hˆherem Feld als das 119Sn-NMR-Signal der Ausgangsverbin-
dung 2 (d¼ 562 ppm)[8] oder anderer Stannylidene liegt.[15]

Die Synthese des ersten Komplexes mit einer Dreifach-
bindung zu einem linear koordinierten Zinnatom[16] bekr‰f-
tigt die Effektivit‰t der Distickstoff-Eliminierungs-Methode
bei der Kn¸pfung von Dreifachbindungen zu den hˆheren
Homologen des Kohlenstoffs. Au˚erdem belegen die inzwi-
schen erfolgten Synthesen der verwandten Molybd‰n-Stan-
nylidin-Komplexe trans-[Cl(L2)2Mo�Sn�C6H3-2,6-Mes2]
(L2¼ dppe, 2PMe3) und der Wolframverbindungen trans-
[Cl(dppe)n(PMe3)mW�Sn�C6H3-2,6-Mes2] (n¼ 1, m¼ 2; n¼
2, m¼ 0) den beachtlichen Anwendungsbereich der Metho-
de.[16] Die Eignung der Stannylidinkomplexe als SnR-Trans-
fer-Reagentien wird zurzeit untersucht.

Experimentelles
Zu den Versuchsbedingungen und analytischen Methoden siehe
Lit. [5b]. Die NMR-Spektren wurden in [D8]THF bei 25 8Cmit einem
Bruker-AM-300-Spektrometer aufgenommen. Die 1H- und 13C-
NMR-Signale des meta-Terphenylsubstituenten in 3 wurden durch
H,H-COSY-, H,C-COSY- und HMBC-Experimente zugeordnet. Das
119Sn{1H}-NMR-Spektrum von 3 wurde gegen eine externe SnMe4-
Lˆsung in [D8]THF kalibriert.
3 : Zu einem ‰quimolarem Gemisch aus orangefarbenem 1

(0.217 g, 0.399 mmol) und gelbem 2 (0.187 g, 0.200 mmol) wurde im
Vakuum Toluol (ca. 20 mL) kondensiert. Die so erhaltene dunkelrote
Lˆsung wurde in der Handschuhbox bei Raumtemperatur ger¸hrt. In
einem mehrere Stunden sp‰ter aufgenommenen IR-Spektrum der
Lˆsung war die Intensit‰t der ñ(N2)-Absorptionsbanden von 1 bei
1984 und 1923 cm�1 nur wenig verringert, was auf eine langsam
voranschreitende Reaktion hinwies. Daraufhin wurde das Reaktions-
gemisch in einem vorgeheizten ÷lbad (150 8C) zum R¸ckfluss
erw‰rmt, worauf sich die Lˆsung rasch dunkelrotbraun f‰rbte. Das
nach 4 min aufgenommene IR-Spektrum belegte nun die vollst‰ndige
Umsetzung des Ausgangskomplexes. Das Lˆsungsmittel wurde unter
Lichtausschluss verdampft und das verbliebene rotbraune ÷l ca. 12 h
im K¸hlschrank bei �30 8C gelagert. Hierbei kristallisierte das ÷l zu
einem aus verfilzten Nadeln bestehenden, rotbraunen Block. Der
kristalline Block wurde bei 45 8C im Vakuum 0.5 h getrocknet.
Anschlie˚end wurde Pentan (ca. 30 mL) einkondensiert. Die so
erhaltene, tr¸be, dunkelrote Lˆsung wurde von einer kleinen Menge
eines unlˆslichen, khakifarbenen Stoffes abfiltriert, der bei Luftkon-
takt rauchte. Das Filtrat wurde im Vakuum bis zum Einsetzen der
Kristallisation eingeengt und anschlie˚end erst bei �30 8C und
danach auf Trockeneis gelagert. Die Mutterlauge wurde bei tiefer
Temperatur von den Kristallen abdekantiert, diese unter Vakuum auf
Raumtemperatur erw‰rmt und 1 h getrocknet. Man erhielt 178 mg
(47% bezogen auf 1) eines rotbraunen, mikrokristallinen Feststoffs,
der sich ab 165 8C zersetzte.

C,H,N,Cl-Analyse: ber. f¸r C36H61ClP4SnW (955.78): C 45.24, H
6.43, Cl 3.71, N 0.00; gef.: C 44.84, H 6.03, Cl 3.92, N 0.00; 1H-NMR:
d¼ 1.39 (m, 36H, 4 îP(CH3)3), 2.06 (s, 12H, 4 îo-CH3, Mes), 2.31 (s,
6H, 2 îp-CH3, Mes), 6.87 (d, 3J(H,H)¼ 7.5 Hz, 2H,m-H, C6H3), 6.87
(s, 4H, m-H, Mes), 7.29 ppm (t, 3J(H,H)¼ 7.5 Hz, 1H, p-H, C6H3);
13C{1H}-NMR: d¼ 21.3 (s, 2 îp-CH3, Mes), 21.8 (s, 4 î o-CH3, Mes),
30.2 (m, 4îP(CH3)3), 128.1 (s, p-C, C6H3), 129.9 (s, 4 îm-C, Mes),
130.6 (s, 2 îm-C, C6H3), 136.7 (s, 4 î o-C, Mes), 137.4 (s, 2 î p-C, Mes),
142.4 (s, 2 î ipso-C, Mes), 146.2 (quint, 4J(P,C)¼ 1.4 Hz, 2 îo-C,
C6H3), 191.8 ppm (quint, 3J(P,C)¼ 0.8 Hz, 1 î ipso-C, C6H3); 31P{1H}-
NMR: d¼�27.7 ppm {s, 1J(183W,31P)¼ 256.7 Hz, 2J(117Sn/119Sn,31P)¼
129.6 Hz (die Kopplungen zu den 117Sn- und 119Sn-Kernen konnten
wegen der zu gro˚en Linienbreite der Zinn-Satellitensignale nicht

aufgelˆst werden)}; 119Sn{1H}-NMR: d¼ 340.1 ppm (quint,
2J(119Sn,31P)¼ 133.8 Hz).
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